Conference paper Open Access
Elaine Zosa; Mark Granroth-Wilding
{ "files": [ { "links": { "self": "https://zenodo.org/api/files/1ea42e63-7fc9-42de-b6bb-965b14749a67/multilingual_dynamic_topic_model_granrothwilding_zosa.pdf" }, "checksum": "md5:8e76ae0c7dedae0cd23529bfa1f924d9", "bucket": "1ea42e63-7fc9-42de-b6bb-965b14749a67", "key": "multilingual_dynamic_topic_model_granrothwilding_zosa.pdf", "type": "pdf", "size": 398196 } ], "owners": [ 58661 ], "doi": "10.5281/zenodo.3402878", "stats": { "version_unique_downloads": 429.0, "unique_views": 321.0, "views": 365.0, "version_views": 365.0, "unique_downloads": 429.0, "version_unique_views": 321.0, "volume": 176799024.0, "version_downloads": 444.0, "downloads": 444.0, "version_volume": 176799024.0 }, "links": { "doi": "https://doi.org/10.5281/zenodo.3402878", "conceptdoi": "https://doi.org/10.5281/zenodo.3402877", "bucket": "https://zenodo.org/api/files/1ea42e63-7fc9-42de-b6bb-965b14749a67", "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.3402877.svg", "html": "https://zenodo.org/record/3402878", "latest_html": "https://zenodo.org/record/3402878", "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.3402878.svg", "latest": "https://zenodo.org/api/records/3402878" }, "conceptdoi": "10.5281/zenodo.3402877", "created": "2019-09-09T11:04:36.501872+00:00", "updated": "2020-01-20T17:11:40.502975+00:00", "conceptrecid": "3402877", "revision": 4, "id": 3402878, "metadata": { "access_right_category": "success", "doi": "10.5281/zenodo.3402878", "description": "<p>Dynamic topic models (DTMs) capture the evolution of topics and trends in time series data.<br>\nCurrent DTMs are applicable only to monolingual datasets. In this paper we present the multilingual<br>\ndynamic topic model (ML-DTM), a novel topic model that combines DTM with an existing multilingual<br>\ntopic modeling method to capture crosslingual topics that evolve across time. We present<br>\nresults of this model on a parallel German-English corpus of news articles and a comparable corpus<br>\nof Finnish and Swedish news articles. We demonstrate the capability of ML-DTM to track significant<br>\nevents related to a topic and show that it finds distinct topics and performs as well as existing<br>\nmultilingual topic models in aligning cross-lingual topics.</p>", "language": "eng", "title": "Multilingual Dynamic Topic Model", "license": { "id": "CC-BY-4.0" }, "relations": { "version": [ { "count": 1, "index": 0, "parent": { "pid_type": "recid", "pid_value": "3402877" }, "is_last": true, "last_child": { "pid_type": "recid", "pid_value": "3402878" } } ] }, "grants": [ { "code": "770299", "links": { "self": "https://zenodo.org/api/grants/10.13039/501100000780::770299" }, "title": "NewsEye: A Digital Investigator for Historical Newspapers", "acronym": "NewsEye", "program": "H2020", "funder": { "doi": "10.13039/501100000780", "acronyms": [], "name": "European Commission", "links": { "self": "https://zenodo.org/api/funders/10.13039/501100000780" } } } ], "keywords": [ "Topic modeling" ], "publication_date": "2019-09-02", "creators": [ { "affiliation": "University of Helsinki", "name": "Elaine Zosa" }, { "affiliation": "University of Helsinki", "name": "Mark Granroth-Wilding" } ], "meeting": { "acronym": "RANLP", "url": "http://lml.bas.bg/ranlp2019/start.php", "dates": "2-4 September 2019", "place": "Bulgaria", "title": "Recent Advances in Natural Language Processing" }, "access_right": "open", "resource_type": { "subtype": "conferencepaper", "type": "publication", "title": "Conference paper" }, "related_identifiers": [ { "scheme": "doi", "identifier": "10.5281/zenodo.3402877", "relation": "isVersionOf" } ] } }
All versions | This version | |
---|---|---|
Views | 365 | 365 |
Downloads | 444 | 444 |
Data volume | 176.8 MB | 176.8 MB |
Unique views | 321 | 321 |
Unique downloads | 429 | 429 |