Conference paper Open Access

Multilingual Dynamic Topic Model

Elaine Zosa; Mark Granroth-Wilding


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Elaine Zosa</dc:creator>
  <dc:creator>Mark Granroth-Wilding</dc:creator>
  <dc:date>2019-09-02</dc:date>
  <dc:description>Dynamic topic models (DTMs) capture the evolution of topics and trends in time series data.
Current DTMs are applicable only to monolingual datasets. In this paper we present the multilingual
dynamic topic model (ML-DTM), a novel topic model that combines DTM with an existing multilingual
topic modeling method to capture crosslingual topics that evolve across time. We present
results of this model on a parallel German-English corpus of news articles and a comparable corpus
of Finnish and Swedish news articles. We demonstrate the capability of ML-DTM to track significant
events related to a topic and show that it finds distinct topics and performs as well as existing
multilingual topic models in aligning cross-lingual topics.</dc:description>
  <dc:identifier>https://zenodo.org/record/3402878</dc:identifier>
  <dc:identifier>10.5281/zenodo.3402878</dc:identifier>
  <dc:identifier>oai:zenodo.org:3402878</dc:identifier>
  <dc:language>eng</dc:language>
  <dc:relation>info:eu-repo/grantAgreement/EC/H2020/770299/</dc:relation>
  <dc:relation>doi:10.5281/zenodo.3402877</dc:relation>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:subject>Topic modeling</dc:subject>
  <dc:title>Multilingual Dynamic Topic Model</dc:title>
  <dc:type>info:eu-repo/semantics/conferencePaper</dc:type>
  <dc:type>publication-conferencepaper</dc:type>
</oai_dc:dc>
365
444
views
downloads
All versions This version
Views 365365
Downloads 444444
Data volume 176.8 MB176.8 MB
Unique views 321321
Unique downloads 429429

Share

Cite as